

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Microservices
Technology Enabler
from Oracle
iJUG / Oracle Roadshow 2015

Peter Doschkinow
Michael Bräuer
November 2015

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

3

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Agenda

• Microservices

• Jersey features for microservices

• Demos

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Characteristics of Existing Monolith Architecture

5

The status quo has served us well but there are new alternatives

Hardware

Operating System

Hypervisor

Operating System

Application Container

Large Monolithic Application One large archive, including
UI(s) and application code

VM

• Three tiers

• Scale by cloning behind load
balancer (X-axis scaling)

• One programming language

• Everything centralized –
messaging, storage,
database, etc

Feature-rich – support large,
complicated applications, many
use cases

Provide 100% isolation
between tenants

Procured and manually set up

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Existing Monolith Architecture Has its Limits

6

Too Slow
Teams split up by function – UI,

application, middleware, database, etc.
Takes forever to get anything done due to

cross-ticketing

Too Fragile
A bug will quickly bring down an entire

application. Little resiliency

Inefficient Testing
Each time you touch the application, you
have to re-test the whole thing. Hard to

support continuous delivery

No Ownership
Code falls victim to “tragedy of the

commons” – when there’s little
ownership, you see neglect

Too Complex
Apps get too big and complicated for a

developer to understand over time. Shared
layers (ORM, messaging, etc) have to handle

100% of use cases – no point solutions

No
Ownership

Too
Slow

No
Specialization

Too Complex

Inefficient
Testing

Too Fragile

No Specialization
Different parts of applications have
different needs – more CPU, more

memory, faster network, etc..
Can not evolve at a different pace

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

What Are Microservices?

7

Minimal function services that are deployed separately but can interact together to
achieve a broader use-case

Status Quo Microservices

Single, Monolithic App

Must Test/Deploy/Scale Entire App

One Database for Entire App

In-process Calls Locally, SOAP Externally

Organized Around Technology Layers

One Technology Stack for Entire App

Developers Don’t Do Ops

Many, Smaller Minimal Function Microservices

Can Test/Deploy/Scale Each Microservice Independently

Each Microservice Has Its Own Datastore

REST Calls Over HTTP, Messaging, or Binary

Organized Around Business Capabilities

Choice of Technology for Each Microservice

Developers + Ops Support Production in Perpetuity

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Benefits of Microservices Come With Costs

8

Strong Module Boundaries

Forces boundaries because each module is
deployed separately

Independent Deployment

Each team is free to deploy what/when
they want

Ability to Pick Different Technology

Each team can pick the best technologies
for each microservice

Distributed Computing

Microservice deployed separately, with
latency separating each service

Eventual Consistency

System as a whole is eventually consistent
because data is fragmented

Operational Complexity

Need mature DevOps team, with very
high skills

B
e

n
e

fi
ts

C
o

st
s

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Microservices: Reality Check

• The name “Microservices” is incredibly vague

– Big hurdle to practical adoption by average Joe developer

– Already hijacked and overloaded by commercial interests

• Simple concept with a long history

– UNIX, CORBA, Jini, RMI, EJB 1/2, COM/DCOM, OSGi, SOAP/ESB

– A SOA with some special characteristics

• Decomposing larger systems into smaller independently deployable parts

– Purists distance themselves from SOAP, ESB

– Purists embrace mostly REST and messaging

– Purists take for granted testing, DevOps, continuous delivery

– Purists focus on (ridiculously) fine grained services

– Purists consider the implementation of non-functional requirements to be part of the service

9

SOA
dumb endpoints,

smart pipes

µ-services
smart endpoints,

dumb pipes

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Microservices: The Bottom Line

– Majority of systems just fine as “monoliths”

– Majority of systems needing microservices could evolve into “hybrids”

– Few practical enterprise systems can or need to achieve microservices
nirvana

Oracle Confidential – Internal/Restricted/Highly Restricted 10

… don’t even consider microservices unless you have a system that’s too complex to
 manage as a monolith.
The majority of software systems should be built as a single monolithic application.
Do pay attention to good modularity within that monolith, but don’t try to separate
it into separate services

http://martinfowler.com/bliki/MicroservicePremium.html

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Microservices Related Technologies

• Frameworks: fat jars, “containerless”

– Vert.x, Spring Boot, Dropwizard

– WildFly Swarm, Payara Micro/Embedded GlassFish, TomEE Embedded

– Grizzly(HTTP) + Jersey(JAX-RS) + Tyrus(WebSocket) + ...

• Java libraries for reactive programming

–RxJava, Hystrix

•Virtualization

–Docker, Rocket

• Cloud

–IaaS, PaaS

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

WebLogic Multitenant Microcontainer for Microservices

• Each microservice instance can have
its own light-weight WebLogic
container-like partition

• Partition isolation inside the JVM

• Easily move partitions between
WebLogic hosts

• Each partition is exceptionally light

• Each WebLogic host can support
hundreds of partitions

12

Similar to Oracle Database pluggable/container databases

WebLogic

JVM

Microservice

OS Process

Operating System Instance

Microservice Microservice

Microservice Microservice Microservice

Microservice Microservice Microservice

Microservice Microservice Microservice

Microservice Microservice Microservice

Multi Tenant WebLogic

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

JAX-RS/Jersey primer

• JAX-RS 2.0

– part of Java EE 7 (2013)

– defines a standard API for
• Implementing RESTful web services in Java

• REST client API

• Jersey 2.0

– provides production ready JAX-RS 2.0 reference implementation

– brings several non-standard features

– Current version is 2.22.1

13

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Agenda

• Microservices

• Jersey features for microservices

• Demos

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Jersey for Microservices

• Integration with various HTTP containers and client transports

• Reactive/Async Client

• Test Framework, Monitoring and Tracing

• Support for SSE

• Dynamic reloading

• Various data bindings

• Security

• MVC view templates

• Weld (CDI) support

15

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Supported server containers

• Grizzly HTTP server

• Jetty HTTP Container (Jetty Server Handler)

• Servlet 2.4-3.1

• Java SE HTTP Server (HttpHandler)

• Other containers could be plugged in via ContainerProvider SPI

Oracle Confidential – Internal/Restricted/Highly Restricted 16

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Grizzly Lightweight HTTP Server: High Performance I/O

• Oracle sponsored open source

• Brings non-blocking sockets to the protocol
processing layer

– Support for non-blocking I/O and HTTP processing

• HTTP/2, WebSocket, Comet Support

• Serves static resources

• Endless configuration possibilities

17

Great for inter-process communication

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Grizzly HTTP server support and configuration

HttpServer httpServer =

 GrizzlyHttpServerFactory.createHttpServer(AppURI, new JaxRsApplication(), false);

httpServer.getServerConfiguration().setSessionTimeoutSeconds(. . .);

NetworkListener grizzlyListener = httpServer.getListener("grizzly");

grizzlyListener.getTransport().setSelectorRunnersCount(4);
grizzlyListener.getTransport().setWorkerThreadPoolConfig(
 ThreadPoolConfig.defaultConfig().setCorePoolSize(16).setMaxPoolSize(16));

listener.setDefaultErrorPageGenerator(. . .);

listener.getFileCache().setMaxCacheEntries(. . .);

listener.getCompressionConfig().setCompressionMode(. . .);

httpServer.start();

18

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

• Collaborative drawing

• Two-page application

– List of drawings

– Drawing

• Demonstrating
– Server-side

• Java EE 7: JAX-RS, JSON, WebSocket

• Jersey specific: SSE, JSON-B

• Lightweight integration Jersey+Tyrus+Grizzly – only 10 MB footprint!

– Client-side: AngularJS or JavaFX

19

https://github.com/doschkinow/ijug-roadshow-2015/tree/master/drawingboard-light

HTML5 App with Jersey+Tyrus+Grizzly: Drawing Board Demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 20

Thin Server Architecture

Drawing Board Demo

HTTP/S

Web
Sockets

SSE

Clients

JSON

JSON

HTML5 Browser

JavaFX

WebView/WebKit

webSocketSend.send(...)

send(...) onEvent(...)

DrawingService.query(...)

DataProvider
POJO

(Drawings
HashMap)

JA
X

-R
S,

SS

E
(J

er
se

y)

W
S

En
d

p
o

in
t

(T
yr

u
s)

Grizzly

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

JAX-RS based Microservices Orchestration
Weather

Customers

Destinations

Quoting

Travel Agency

Travel Agency Demo Application

• Remote

– Destinations, weather, quoting

– application/json, application/xml

– Delays are simulated

• Travel agency client

– application/json

– Dependent calls

https://github.com/jersey/jersey/tree/master/examples/rx-client-java8-webapp
https://jersey.java.net/documentation/latest/user-guide.html#rx-client

https://github.com/jersey/jersey/tree/master/examples/rx-client-java8-webapp
https://github.com/jersey/jersey/tree/master/examples/rx-client-java8-webapp
https://github.com/jersey/jersey/tree/master/examples/rx-client-java8-webapp
https://github.com/jersey/jersey/tree/master/examples/rx-client-java8-webapp
https://github.com/jersey/jersey/tree/master/examples/rx-client-java8-webapp
https://github.com/jersey/jersey/tree/master/examples/rx-client-java8-webapp
https://github.com/jersey/jersey/tree/master/examples/rx-client-java8-webapp
https://jersey.java.net/documentation/latest/user-guide.html
https://jersey.java.net/documentation/latest/user-guide.html
https://jersey.java.net/documentation/latest/user-guide.html
https://jersey.java.net/documentation/latest/user-guide.html
https://jersey.java.net/documentation/latest/user-guide.html

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Orchestration Layer Benefits

• Client specific API

– Different needs for various devices: screen size, payment methods, ...

• Single Entry Point

– No need to communicate with multiple services

• Thinner client
– No need to consume different formats of data

• Less frequent client updates

– Doesn’t matter if one service is removed in favor of another service

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

A Naïve Approach

Implementing the Service

Get
Customer Details

Get a list of 10
Recommended

Destinations

Get
Quote

for the Customer

Get
Weather Forecast

for each Destination for each Destination

150 ms 250 ms 1 700 ms

170 ms

3 300 ms

330 ms

5 400 ms

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Client – Synchronous Approach

• Easy to read, understand and debug

– Simple requests, Composed requests

• Slow

– Sequential processing even for independent requests

• Wasting resources
– Waiting threads

• Suitable for

– Lower number of requests

– Single request that depends on the result of previous operation

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Optimized Approach

Implementing the Service

170 ms

Get
Customer Details

Get a list of 10
Recommended

Destinations

Async Get
Quote

for the Customer

Async Get
Weather Forecast

for each Destination

for each Destination

150 ms 250 ms 330 ms

330 ms

730 ms

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Client – Asynchronous Approach

• Returns immediately after submitting a request

– Future

• Harder to read, understand and debug

– Especially when dealing with multiple futures and composed, dependent calls

• Need to find out when all Async requests finished
– Relevant only for 2 or more requests (CountDownLatch)

• Fast

– Each request can run on a separate thread

• Suitable for many independent calls

Futures

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Jersey Client Features

• Fluent API for sync and async calls

• Reactive extensions

• Many connectors (Grizzly, Jetty, Apache, …)

– Alternatives to the Jersey default transport, based on HttpUrlConnection

• Secure (SSL, Digest, Basic, OAuth, …)

• Various data bindings

• Filters

Oracle Confidential – Internal/Restricted/Highly Restricted 27

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Reactive Jersey Client API

• Easier programming for asynchronous data streams

• Data flow

– execution model propagates changes through the flow

• Event based

– notify observers about new events, completion or error

• Composable
– compose/ transform streams into a resulting stream

• Reactive client API to be introduced in JAX-RS 2.1

Oracle Confidential – Internal/Restricted/Highly Restricted 28

Reactive programming model

https://github.com/jersey/jersey/tree/master/ext/rx

https://github.com/jersey/jersey/tree/master/ext/rx

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Reactive Jersey Client API

• Java 8: CompletionStage, CompletableFuture

– Native part of JDK

– Fits the new Java Stream API programming model

– JSR166e – Support for CompletableFuture on Java SE 6 and Java SE 7

• RXJava: Observable

– Currently most advanced reactive API in Java

– Contributed by Netflix – hardened & tested in production

• Guava: ListenableFuture, Futures
– Similar to Java SE 8

Oracle Confidential – Internal/Restricted/Highly Restricted 29

Abstraction over different reactive libraries

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

public interface SyncInvoker {

 Response get();

 <T> T get(Class<T> responseType);

 <T> T get(GenericType<T> responseType);

 // ...
}

public interface AsyncInvoker {

 Future<Response> get();

 <T> Future<T> get(Class<T> responseType);

 <T> Future<T> get(GenericType<T> responseType);

 // ...
}

SyncInvoker and AsyncInvoker

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

public interface RxInvoker<T> {
// for now T can be
// CompletionStage/Java8, Observable/RxJava, CompletableFuture/jsr166, ListenebleFuture/Guava

 T get();

 <R> T get(Class<R> responseType);

 <R> T get(GenericType<R> responseType);

 // ...
}

public interface RxCompletionStageInvoker extends RxInvoker<CompletionStage> {

 CompletionStage<Response> get();

 <T> CompletionStage<T> get(Class<T> responseType);

 <T> CompletionStage<T> get(GenericType<T> responseType);

 // ...
}

RxInvoker and an extension Example

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Sync Client Example

Oracle Confidential – Internal/Restricted/Highly Restricted 32

SyncInvoker used

private WebTarget destination;
List<Destination> recommended = Collections.emptyList();
...
recommended = destination.path("recommended").request()
 // Identify the user.
 .header("Rx-User", "Sync")
 // Return a list of destinations.
 .get(new GenericType<List<Destination>>() {});

...

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Async Client Example

Oracle Confidential – Internal/Restricted/Highly Restricted 33

AsyncInvoker used

private WebTarget destination;
List<Destination> recommended = Collections.emptyList();
...
recommended = destination.path("recommended").request()
 // Identify the user.
 .header("Rx-User", "Sync")
 // Async invoker.
 .async()
 // Return a list of destinations.
 .get(new InvocationCallback<List<Destination>>() {
 @Override
 public void completed(final List<Destination> recommended) {
 ...
 }
 ...
 });

...

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Reactive Client Example

Oracle Confidential – Internal/Restricted/Highly Restricted 34

RxObservableInvoker used

private WebTarget destination;
List<Destination> recommended = Collections.emptyList();
...
final Observable<Destination> recommended = RxObservable.from(destination).path("recommended").request()
 // Identify the user.
 .header("Rx-User", "RxJava")
 // Reactive invoker.
 .rx()
 // Return a list of destinations.
 .get(new GenericType<List<Destination>>() {})
 // Emit destinations one-by-one.
 .flatMap(Observable::from)
 // Remember emitted items for dependant requests.
 .cache();

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Jersey Test Framework

• Based on JUnit

• Support for TestNG available

• Multiple container support

– Grizzly

– In memory

– Java SE Http Server

– Jetty

– External container support

36

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Monitoring support

• Powerful monitoring API

– Basic statistics collected

• Must be explicitly enabled

– ServerProperties.MONITORING_STATISTICS_ENABLED

– ServerProperties.MONITORING_STATISTICS_MBEANS_ENABLED

– Register your own event listeners

• MonitoringStatistics could be injected into any resource and reused:

– @Inject private Provider<MonitoringStatistics> statistics;

37

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Grizzly and Jersey Monitoring Demo

38

https://github.com/PetrJanouch/JavaOne2015-Monitoring-Demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Jersey 3.0

• Jersey 2.x branched off and 3.x on the master

• Based on JAX-RS 2.1

– Non-blocking IO

– SSE support

– Support for reactive programming

• Java 8 friendly

• Backwards compatible with 2.x

Oracle Confidential – Internal/Restricted/Highly Restricted 39

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Jersey 3.0 Non-Blocking I/O

• Extra performance boost

• Inspired by but not based on Servlet 3.1

• Beneficial for large and streamed entities

• A brand new client connector

– Getting rid of HttpUrlConnection

– First version already in incubator

– Much better performance than HttpUrlConnection even in blocking mode

Oracle Confidential – Internal/Restricted/Highly Restricted 40

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Summary

• Microservices are a valuable architectural technique, but:

– not necessarily for everyone

– not necessary always

– not necessarily all-at-once

• Building microservises with Jersey is easier

– Many microservices-related features in Jersey are going to be standardized

Oracle Confidential – Internal/Restricted/Highly Restricted 41

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 42

